monkeypox
এই লক্ষনগুলি দেখলে সতর্ক হন, মাঙ্কিপক্স হতে পারে!
May 28, 2022, 9:03pm
আন্তর্জাতিক
মাঙ্কিপক্স বড়দের থেকে ছোটোদের শরীরে ছড়াচ্ছে বেশি। তাই শিশুদের দিকে বিশেষ করে নজর রাখতে হবে। মাঙ্কিপক্স মূলত হামলা চালাচ্ছে পাঁচ বছরের নীচের বয়েসীদের শিশুদের শরীরে ওপর। আইসিএমআরের গবেষকরা জানাচ্ছেন, এখনও মাঙ্কিপক্সের কোনও কেস ধরা পড়েনি ভারতে। তবে সতর্ক থাকা বাঞ্ছনীয়। বিশেষ কিছু কিছু উপসর্গ দেখা দিলেই তৎপর স্বাস্থ্যকেন্দ্রে যোগাযোগ করতে হবে। আইসিএমআরের গবেষক তাই মাঙ্কিপক্স সংক্রান্ত শরীরের অস্বাভাবিক লক্ষণগুলি তালিকাভুক্ত করেছেন।
মাঙ্কিপক্স সাধারণ পাঁচটি লক্ষণ:
- শরীরের ব্যাথা
- ত্বকে বড় বড় গুটি
- মাত্রাতিরিক্ত জ্বর
- লিম্ফ্যাডেনোপ্যাথি
- বড় লিম্ফ নোড
মাঙ্কি পক্সের ঘটনা আফ্রিকাতে খোঁজ পাওয়া যায় যেখানে মানুষকে ইঁদুর বা ধারালো দাঁতের ছোট প্রাণীর কামড়ের মাধ্যমে সংক্রমিত হয়েছে। এই ভাইরাস প্রসঙ্গে জারি হয়েছে সতর্কতা। এটি মারাত্মক রোগের মধ্যে একটি। আর ছোঁয়াচে রোগ বলে মনে করছেন অনেকে।
Comments
Turbine Balancing: Achieving Optimal Performance
In the realm of turbine operation, the significance of turbine balancing cannot be overstated. It plays a critical role in maintaining the efficiency and longevity of various industrial applications, including turbines, fans, and centrifuges. Dynamic balancing is particularly vital as it directly addresses the intricate issues that arise from rotational imbalances.
Understanding Turbine Balancing
Turbine balancing refers to the process of adjusting the distribution of mass around the rotor axis to minimize vibrations and improve performance. This process involves two types of balance: static and dynamic. Static balance occurs when a rotor remains stationary and is adjusted to eliminate weight discrepancies at one plane. In contrast, dynamic balance takes place during rotation, addressing multiple imbalances across different planes.
Static vs. Dynamic Balancing
Static balancing occurs when a rotor is motionless, focusing on correcting the alignment of its center of gravity. If the center of gravity is misaligned, gravity will cause the rotor to settle into an unfavorable position. This situation can be rectified by adding or removing mass from specific locations on the rotor.
Dynamic balancing, however, deals with more complex scenarios. It stems from dynamic imbalances that manifest only when the rotor is in motion. Unlike static issues that involve a single plane, dynamic balancing requires managing multiple mass displacements across various planes. The forces generated by these imbalances can lead to undesirable vibrations which affect the overall efficiency of operation.
Implemented Techniques in Turbine Balancing
For effective turbine balancing, the use of advanced equipment such as the Balanset-1A device is essential. This portable balancer and vibration analyzer excel in facilitating dynamic balancing and can be applied to a broad spectrum of rotors, including turbines, augers, and fan systems.
The process begins with an initial vibration measurement, where vibration sensors are connected to the rotor. Once the rotor starts, the machine captures the baseline vibrations, providing a reference point for subsequent analysis. This initial data is crucial in evaluating the current state of balance within the rotor.
Calibration and Weight Adjustments
Following the initial measurements, a calibration weight is strategically placed on one side of the rotor for testing. The rotor is activated again to measure changes in vibration due to this added weight. By documenting the vibration responses, operators can identify the impact of the calibration weight, guiding future adjustments.
Once the calibration weight's effects are analyzed, the process includes moving the weight to various locations and re-measuring vibrations to gather comprehensive data. This cyclical approach ensures accurate findings that drive the decision-making process for corrective actions.
Final Adjustments and Confirmation
In the final balancing phase, the analyzer calculates the necessary weights and their respective installation locations on the rotor. During this critical stage, corrective weights are installed based on the analysis results. Once these weights are placed, the rotor undergoes another set of tests to confirm that vibrations have diminished to acceptable levels, thereby indicating a successful balance.
The Benefits of Effective Turbine Balancing
By implementing precise turbine balancing techniques, industries can experience a plethora of benefits. Effective balancing enhances operational efficiency, reduces wear and tear on machinery, and prolongs the lifespan of critical components. Furthermore, it minimizes energy consumption and operational costs, highlighting the importance of regular maintenance and balancing practices.
Industrial Applications
The importance of turbine balancing transcends various industrial environments. It is indispensable in sectors where machinery relies on rotating components, including manufacturing, power generation, and agricultural processing. The efficiency of machinery like fans, crushers, and centrifuges hinges upon effective turbine balancing, underscoring its cross-industry relevance.
Conclusion: The Future of Turbine Balancing
As industries continue to evolve, the methodology surrounding turbine balancing will also advance. The integration of smart technology and data analytics will further refine balancing techniques. With the ever-increasing demand for precision and efficiency, turbine balancing will remain a key area of focus for engineers and industries alike. By investing in advanced balancing technologies and adhering to systematic approaches, organizations can ensure their turbines operate at peak performance, safeguarding profitability and sustainability in the long term.